

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(*N*-Methylanilino)methyl]-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3*H*)thione

Ali A. El-Emam,^a Mohamed A. Al-Omar,^a Hazem A. Ghabbour,^a Hoong-Kun Fun^b*‡ and Tze Shyang Chia^b

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 28 March 2012; accepted 3 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.048; wR factor = 0.156; data-to-parameter ratio = 12.2.

In the title compound, $C_{14}H_{13}N_3OS_2$, the thiophene ring is disordered over two orientations by *ca* 180° about the C–C bond axis linking the ring to the rest of the molecule, with a site-occupancy ratio of 0.651 (5):0.349 (5). The central 1,3,4oxadiazole-2(3*H*)-thione ring forms dihedral angles of 9.2 (5), 4.6 (11) and 47.70 (7)° with the major and minor parts of the disordered thiophene ring and the terminal phenyl ring, respectively. In the crystal, no significant intermolecular hydrogen bonds are observed. The crystal packing is stabilized by π – π interactions [centroid–centroid distance = 3.589 (2) Å].

Related literature

For the biological activity of 1,3,4-oxadiazole derivatives, see: Navarrete-Vázquez *et al.* (2007); Kadi *et al.* (2007); Padmavathi *et al.* (2009); El-Emam *et al.* (2004); Al-Deeb *et al.* (2006). For the synthesis of the title compound, see: Al-Omar (2010). For related 1,3,4-oxadiazole structures, see: Fun *et al.* (2011); El-Emam *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{13}N_3OS_2\\ M_r = 303.39\\ \text{Monoclinic, } P2_1/n\\ a = 11.9682 \ (8) \text{ Å}\\ b = 7.4526 \ (5) \text{ Å}\\ c = 17.0749 \ (14) \text{ Å}\\ \beta = 108.072 \ (6)^\circ \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.150, T_{max} = 0.754$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.156$ S = 0.972676 reflections $V = 1447.85 (18) \text{ Å}^{3}$ Z = 4Cu K\alpha radiation $\mu = 3.32 \text{ mm}^{-1}$ T = 296 K $0.92 \times 0.16 \times 0.09 \text{ mm}$

10021 measured reflections 2676 independent reflections 1516 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.066$

220 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.16~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.20~e~{\rm \AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

AAEE, MAAO and HAG thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for financial support. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5107).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

References

- Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47. Al-Omar, M. A. (2010). Molecules, 15, 502–514.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.
- El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0795.
- Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, 03372.
- Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.
- Navarrete-Vázquez, G., Molina-Salinas, G. M., Duarte-Fajardo, Z. V., Vargas-Villarreal, J., Estrada-Soto, S. & Gonzàlez-Salazar, F. (2007). *Bioorg. Med. Chem.* 15, 5502–5508.
- Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). *Eur. J. Med. Chem.* 44, 2106–2112.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1345-o1346 [doi:10.1107/S1600536812014419]

3-[(N-Methylanilino)methyl]-5-(thiophen-2-yl)-1,3,4-oxadiazole-2(3H)-thione

Ali A. El-Emam, Mohamed A. Al-Omar, Hazem A. Ghabbour, Hoong-Kun Fun and Tze Shyang Chia

Comment

Considerable attention has been devoted to 1,3,4-oxadiazole derivatives which have long been known for their diverse chemotherapeutic properties as antiviral agents against the HIV-1 viruses (El-Emam *et al.*, 2004), antibacterial agents (Navarrete-Vázquez *et al.*, 2007; Padmavathi *et al.*, 2009) and anti-inflammatory agents (Kadi *et al.*, 2007; Al-Deeb *et al.*, 2006). The title compound (I) was synthesized among a series of 2-thienyl-1,3,4-oxadiazoles and related derivatives as potential antimicrobial agents (Al-Omar, 2010).

The molecular structure of the title compound is shown in Fig. 1. The thiophene ring is disordered by *ca*. 180° rotation about the C2—C3 bond axis with a site-occupancy ratio of 0.651 (5):0.349 (5). The central 1,3,4-oxadiazole-2(3*H*)-thione ring (N1/N2/C1/O1/C2/S2; maximum deviation = 0.0157 (12) Å at atom S2) forms dihedral angles of 9.23 (51), 4.6 (11) and 47.70 (7)° with the major and minor parts of the disordered thiophene ring [S1/C3–C6: maximum deviation = 0.024 (11) Å at atom C4 and S1A/C3/C4A–C6A: maximum deviation = 0.04 (3) Å at atom C6A] and the terminal phenyl ring (C9–C14), respectively.

In the crystal packing, no significant intermolecular hydrogen bondings are observed. The crystal packing is stabilized by a π - π interaction with $Cg2\cdots Cg4$ distance = 3.589 (2) Å (symmetry code: 3/2-x, -1/2+y, 3/2-z), where Cg2 and Cg4 are the centroids of O1/C1/C2/N1/N2 and C9–C14 rings, respectively.

Experimental

N-Methylaniline (214 mg, 2 mmol) and 37% formaldehyde solution (0.5 ml) were added to a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (369 mg, 2 mmol) in ethanol (8 ml). The mixture was stirred at room temperature for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 558 mg (92%) of the title compound (I) as colorless needle crystals. *M*.p.: 112–114 °C. ¹H NMR (CDCl₃, 500.13 MHz): δ 3.28 (s, 3H, CH₃), 5.64 (d, 2H, NCH₂N), 6.83–7.36 (m, 6H, Ar—H & Thiophene-H), 7.55 (d, 1H, Thiophene-H, *J* = 5.0 Hz), 7.70 (d, 1H, Thiophene-H, *J* = 5.0 Hz). ¹³C NMR (CDCl₃, 125.76 MHz): δ 39.54 (CH₃), 66.80 (CH₂), 113.72, 119.12, 123.65, 128.30, 129.36, 130.36, 131.07, 146.69 (Ar—C & Thiophene-C), 155.89 (Oxadiazole C-5), 176.32 (C=S).

Refinement

All H atoms were positioned geometrically (C—H = 0.93, 0.96 or 0.97 Å) and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl group. Initially similarity and FLAT (only to the minor component) restraints were used. In the final refinement, these restraints were removed and the ratio of the refined site occupancies for the major and minor components of the disordered thiophene ring is 0.651 (5):0.349 (5).

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids. Atoms of the minor occupancy component are labelled with the suffix *A*.

3-[(N-Methylanilino)methyl]-5-(thiophen-2-yl)-1,3,4-oxadiazole- 2(3H)-thione

Crystal data	
$C_{14}H_{13}N_3OS_2$ $M_r = 303.39$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.9682 (8) Å b = 7.4526 (5) Å c = 17.0749 (14) Å	F(000) = 632 $D_x = 1.392 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathcal{A} Cell parameters from 587 reflections $\theta = 4.0-45.3^{\circ}$ $\mu = 3.32 \text{ mm}^{-1}$ T = 296 K
$\beta = 108.072 (6)^{\circ}$ $V = 1447.85 (18) Å^{3}$ $Z = 4$ Data collection	Needle, colorless $0.92 \times 0.16 \times 0.09 \text{ mm}$
Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.150$, $T_{max} = 0.754$ 10021 measured reflections 2676 independent reflections 1516 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.066$	
$\theta_{\rm max} = 69.5^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$	
$h = -14 \rightarrow 14$	

Refinement

<i>Heymennenn</i>	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H-atom parameters constrained
$wR(F^2) = 0.156$	$w = 1/[\sigma^2(F_o^2) + (0.0811P)^2]$
S = 0.97	where $P = (F_o^2 + 2F_c^2)/3$
2676 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
220 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0019 (4)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

 $k = -8 \rightarrow 7$ $l = -20 \rightarrow 18$

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S2	0.86759 (10)	0.22270 (15)	1.02672 (6)	0.0941 (4)	
01	0.6522 (2)	0.3191 (3)	0.93576 (13)	0.0697 (6)	
N1	0.6491 (2)	0.2726 (3)	0.80711 (15)	0.0627 (7)	
N2	0.7564 (2)	0.2228 (3)	0.86200 (15)	0.0628 (6)	
N3	0.8999 (2)	0.2802 (4)	0.79288 (16)	0.0707 (7)	
C1	0.7617 (3)	0.2516 (4)	0.94048 (19)	0.0672 (8)	
C2	0.5908 (3)	0.3288 (4)	0.85393 (19)	0.0620 (8)	
C3	0.4743 (3)	0.4013 (4)	0.8291 (2)	0.0651 (8)	
C4	0.413 (2)	0.451 (3)	0.8829 (15)	0.093 (8)	0.651 (5)
H4A	0.4370	0.4340	0.9396	0.111*	0.651 (5)
C5	0.2989 (18)	0.542 (3)	0.8296 (11)	0.083 (5)	0.651 (5)
H5A	0.2436	0.5951	0.8503	0.100*	0.651 (5)
C6	0.2904 (15)	0.533 (2)	0.7508 (13)	0.092 (5)	0.651 (5)
H6A	0.2254	0.5768	0.7096	0.110*	0.651 (5)
S1	0.4025 (5)	0.4400 (7)	0.7304 (4)	0.0799 (9)	0.651 (5)
S1A	0.4022 (12)	0.4715 (16)	0.8908 (8)	0.0785 (19)	0.349 (5)
C6A	0.293 (3)	0.522 (6)	0.825 (3)	0.125 (17)	0.349 (5)
H6AA	0.2263	0.5592	0.8375	0.150*	0.349 (5)
C5A	0.292 (3)	0.512 (4)	0.745 (2)	0.112 (13)	0.349 (5)
H5AA	0.2322	0.5508	0.6995	0.135*	0.349 (5)
C4A	0.416 (3)	0.420 (5)	0.745 (2)	0.090 (13)	0.349 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H4AA	0.4405	0.3878	0.7008	0.108*	0.349 (5)
C7	0.8480 (3)	0.1488 (4)	0.83120 (19)	0.0694 (8)	
H7A	0.9088	0.0953	0.8767	0.083*	
H7B	0.8143	0.0545	0.7918	0.083*	
C8	0.9964 (3)	0.3838 (6)	0.8467 (2)	0.0919 (12)	
H8A	0.9945	0.5035	0.8255	0.138*	
H8B	1.0697	0.3280	0.8492	0.138*	
H8C	0.9887	0.3883	0.9010	0.138*	
С9	0.8762 (3)	0.2882 (4)	0.70804 (19)	0.0638 (8)	
C10	0.9562 (3)	0.3627 (4)	0.6735 (2)	0.0806 (10)	
H10A	1.0280	0.4050	0.7073	0.097*	
C11	0.9293 (5)	0.3740 (6)	0.5890 (3)	0.1074 (15)	
H11A	0.9838	0.4249	0.5669	0.129*	
C12	0.8256 (6)	0.3131 (7)	0.5371 (3)	0.1167 (17)	
H12A	0.8090	0.3218	0.4803	0.140*	
C13	0.7459 (4)	0.2383 (5)	0.5709 (3)	0.0997 (14)	
H13A	0.6744	0.1965	0.5363	0.120*	
C14	0.7697 (3)	0.2240 (4)	0.6550 (2)	0.0766 (9)	
H14A	0.7150	0.1717	0.6764	0.092*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S2	0.0998 (8)	0.1138 (8)	0.0625 (6)	0.0053 (5)	0.0162 (5)	-0.0036 (5)
01	0.0771 (16)	0.0794 (14)	0.0594 (13)	-0.0076 (10)	0.0311 (12)	-0.0051 (9)
N1	0.0636 (17)	0.0670 (14)	0.0627 (15)	-0.0058 (12)	0.0270 (14)	-0.0015 (11)
N2	0.0631 (18)	0.0750 (15)	0.0545 (14)	-0.0025 (12)	0.0245 (14)	-0.0021 (11)
N3	0.0626 (17)	0.0918 (18)	0.0619 (16)	-0.0176 (12)	0.0255 (14)	-0.0119 (13)
C1	0.071 (2)	0.0719 (19)	0.0627 (19)	-0.0063 (14)	0.0268 (18)	-0.0024 (13)
C2	0.068 (2)	0.0644 (18)	0.0607 (18)	-0.0118 (14)	0.0297 (17)	-0.0054 (13)
C3	0.063 (2)	0.0739 (19)	0.065 (2)	-0.0117 (14)	0.030 (2)	-0.0079 (15)
C4	0.076 (11)	0.096 (9)	0.093 (13)	-0.001 (6)	0.010 (8)	-0.011 (6)
C5	0.092 (12)	0.080 (6)	0.099 (9)	-0.013 (5)	0.059 (9)	-0.012 (5)
C6	0.067 (9)	0.082 (6)	0.105 (11)	0.002 (5)	-0.002 (7)	0.002 (6)
S1	0.071 (2)	0.1025 (17)	0.0634 (11)	-0.0140 (14)	0.0171 (11)	-0.0039 (14)
S1A	0.082 (4)	0.087 (3)	0.082 (3)	-0.006 (3)	0.049 (3)	-0.006 (3)
C6A	0.044 (17)	0.13 (3)	0.20 (3)	0.002 (14)	0.03 (2)	-0.03 (2)
C5A	0.077 (18)	0.18 (3)	0.09 (2)	-0.040 (14)	0.050 (15)	0.024 (17)
C4A	0.044 (12)	0.130 (18)	0.11 (3)	0.011 (9)	0.041 (15)	0.031 (12)
C7	0.070 (2)	0.0747 (19)	0.067 (2)	0.0020 (15)	0.0258 (17)	0.0004 (15)
C8	0.077 (3)	0.115 (3)	0.080 (2)	-0.026 (2)	0.020 (2)	-0.016 (2)
C9	0.065 (2)	0.0672 (17)	0.0646 (19)	0.0082 (14)	0.0283 (17)	-0.0042 (13)
C10	0.088 (3)	0.078 (2)	0.090 (3)	0.0077 (17)	0.048 (2)	0.0057 (17)
C11	0.147 (4)	0.096 (3)	0.109 (4)	0.034 (3)	0.082 (3)	0.026 (3)
C12	0.175 (5)	0.110 (4)	0.072 (3)	0.050 (3)	0.049 (3)	0.013 (2)
C13	0.117 (4)	0.099 (3)	0.072 (2)	0.027 (2)	0.014 (3)	-0.010 (2)
C14	0.080 (2)	0.080 (2)	0.070 (2)	0.0079 (17)	0.024 (2)	-0.0098 (16)

Geometric parameters (Å, °)

S2—C1	1.632 (3)	C6A—C5A	1.35 (6)
O1—C2	1.364 (3)	С6А—Н6АА	0.9300
01—C1	1.382 (4)	C5A—C4A	1.63 (5)
N1—C2	1.283 (4)	С5А—Н5АА	0.9300
N1—N2	1.385 (3)	C4A—H4AA	0.9300
N2-C1	1.339 (4)	C7—H7A	0.9700
N2—C7	1.464 (4)	С7—Н7В	0.9700
N3—C9	1.388 (4)	C8—H8A	0.9600
N3—C7	1.423 (4)	C8—H8B	0.9600
N3—C8	1.455 (4)	C8—H8C	0.9600
C2—C3	1.432 (4)	C9—C10	1.386 (4)
C3—C4	1.388 (19)	C9—C14	1.400 (5)
C3—C4A	1.39 (3)	C10—C11	1.379 (5)
C3—S1A	1.641 (12)	C10—H10A	0.9300
C3—S1	1.663 (6)	C11—C12	1.360 (6)
C4—C5	1.55 (3)	C11—H11A	0.9300
C4—H4A	0.9300	C12—C13	1.377 (6)
С5—С6	1.32 (3)	C12—H12A	0.9300
С5—Н5А	0.9300	C13—C14	1.378 (5)
C6—S1	1.641 (19)	C13—H13A	0.9300
С6—Н6А	0.9300	C14—H14A	0.9300
S1A—C6A	1.49 (5)		
C_{1} C_{1} C_{1}	10(2)		107 (2)
$C_2 = 01 = C_1$	100.2(2)	COA = CSA = USA A	107 (3)
C2-N1-N2	103.0 (2)	C0A - C5A - H5AA	126.3
C1 = N2 = N1	112.5(3)	C4A - C5A - H5AA	120.3
CI = N2 = C7	127.7(3)	C_{3} C_{4A} U_{4A}	102 (2)
N1 - N2 - C7	119.9 (2)	C_{3} — C_{4} A— H_{4} AA	128.9
C9 - N3 - C7	122.2(3)	C_{3A} C_{4A} H_{4AA}	128.9
C9 - N3 - C8	120.1(3)	N3 - C7 - N2	112.9 (3)
$C/-N_{3}-C_{8}$	110.7(3)	$N_3 = C_7 = H_7 A$	109.0
$N_2 - C_1 - O_1$	104.5 (3)	N2 - C7 - H/A	109.0
$N_2 - C_1 - S_2$	131.0 (3)	N3 - C7 - H/B	109.0
01 - 01 - 52	123.9 (2)	$N_2 \rightarrow C_7 \rightarrow H_7 B$	107.8
NI - C2 - OI	113.4 (3)	H/A - C/-H/B	107.8
NI - C2 - C3	127.3 (3)	N3 - C8 - H8A	109.5
01 - 02 - 03	119.3 (3)	N3 - C8 - H8B	109.5
C4 - C3 - C4A	116.9 (19)	H8A - C8 - H8B	109.5
C4 - C3 - C2	124.6 (12)	N3 - C8 - H8C	109.5
C4A - C3 - C2	118.5 (15)	H8A - C8 - H8C	109.5
C4A - C3 - SIA	115.5 (15)	H8B - C8 - H8C	109.5
$C_2 - C_3 - SIA$	120.0 (6)	C10 - C9 - N3	121.1 (3)
C4 - C3 - S1	114.3 (12)	C10-C9-C14	118.1 (3)
$C_2 - C_3 - S_1$	121.0 (3)	$N_{3} - C_{9} - C_{14}$	120.7 (3)
SIA	112.7 (6)	C11 - C10 - C9	120.1 (4)
$C_3 - C_4 - C_5$	106.2 (16)	C11 - C10 - H10A	119.9
C3—C4—H4A	126.9	C9—C10—H10A	119.9
C5—C4—H4A	126.9	C12—C11—C10	122.1 (4)

C6—C5—C4	110.7 (15)	C12—C11—H11A	119.0
С6—С5—Н5А	124.7	C10-C11-H11A	119.0
C4—C5—H5A	124.7	C11—C12—C13	118.2 (4)
C5—C6—S1	115.3 (13)	C11—C12—H12A	120.9
С5—С6—Н6А	122.4	C13—C12—H12A	120.9
S1—C6—H6A	122.4	C12—C13—C14	121.4 (5)
C6—S1—C3	93.3 (8)	C12—C13—H13A	119.3
C6A—S1A—C3	96.2 (18)	C14—C13—H13A	119.3
C5A—C6A—S1A	118 (3)	C13—C14—C9	120.1 (4)
С5А—С6А—Н6АА	120.8	C13—C14—H14A	120.0
S1A—C6A—H6AA	120.8	C9—C14—H14A	120.0
C2—N1—N2—C1	-0.7 (3)	C2—C3—S1—C6	-175.1 (6)
C2—N1—N2—C7	179.4 (2)	S1A—C3—S1—C6	-0.3 (8)
N1—N2—C1—O1	1.3 (3)	C4A—C3—S1A—C6A	3 (3)
C7—N2—C1—O1	-178.9 (3)	C2—C3—S1A—C6A	-179.0 (19)
N1—N2—C1—S2	-177.7 (2)	S1—C3—S1A—C6A	6 (2)
C7—N2—C1—S2	2.1 (5)	C3—S1A—C6A—C5A	-6 (4)
C2-O1-C1-N2	-1.3 (3)	S1A—C6A—C5A—C4A	7 (5)
C2	177.8 (2)	C4—C3—C4A—C5A	4 (3)
N2—N1—C2—O1	-0.2 (3)	C2—C3—C4A—C5A	-177.8 (14)
N2—N1—C2—C3	178.2 (3)	S1A—C3—C4A—C5A	1 (3)
C1-01-C2-N1	1.0 (3)	S1—C3—C4A—C5A	-52 (19)
C1—O1—C2—C3	-177.6 (3)	C6A—C5A—C4A—C3	-4 (4)
N1—C2—C3—C4	176.5 (11)	C9—N3—C7—N2	-106.3 (3)
O1—C2—C3—C4	-5.2 (11)	C8—N3—C7—N2	85.5 (4)
N1—C2—C3—C4A	-2.0 (17)	C1—N2—C7—N3	-107.6 (3)
O1—C2—C3—C4A	176.4 (17)	N1—N2—C7—N3	72.2 (3)
N1—C2—C3—S1A	179.8 (5)	C7—N3—C9—C10	-154.3 (3)
O1—C2—C3—S1A	-1.9 (6)	C8—N3—C9—C10	13.5 (4)
N1—C2—C3—S1	-6.1 (5)	C7—N3—C9—C14	26.8 (4)
O1—C2—C3—S1	172.2 (3)	C8—N3—C9—C14	-165.3 (3)
C4A—C3—C4—C5	-8 (2)	N3-C9-C10-C11	-178.1 (3)
C2—C3—C4—C5	173.5 (10)	C14—C9—C10—C11	0.8 (5)
S1A—C3—C4—C5	55 (29)	C9-C10-C11-C12	-0.3 (6)
S1—C3—C4—C5	-4.1 (17)	C10-C11-C12-C13	0.1 (6)
C3—C4—C5—C6	4 (2)	C11—C12—C13—C14	-0.3 (6)
C4—C5—C6—S1	-3 (2)	C12—C13—C14—C9	0.8 (5)
C5—C6—S1—C3	0.2 (15)	C10-C9-C14-C13	-1.0 (5)
C4—C3—S1—C6	2.6 (12)	N3-C9-C14-C13	177.9 (3)
C4A—C3—S1—C6	129 (20)		